Preparation and characteristics of MIL-53 metal-organic framework material with Al/Fe-bimetallic component
Main Article Content
Abstract
In this study, iron doped MIL-53(Al) metal-organic framework material (denoted as Fe/MIL-53(Al)) was prepared by hydrothermal method. The obtained materials were characterized using X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR), thermogravimetry analysis (TG), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray (EDX), and N2 adsorption/ desorption isotherms. The influence of iron content on the structure of MIL-53(Al) and treated temperature of Fe/MIL-53(Al) were investigated. The results showed that the obtained Fe/MIL-53(Al) synthesized at mole ratio of Fe/Al = 1/9, still maintains many structural properties of the MIL-53 material, and the iron element was evenly distributed over the entire area of the material. The treatment at 280ºC had almost no effect on the metal-organic framework structure of the material. The pore of the material was cleared at the treated temperature of 350ºC; therefore, the specific surface area of the material increased significantly.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Keywords
Fe/MIL-53(Al), Metal-organic framework, Bimetallic component, Hydrothermal method
References
Barea, E., Montoro, C., & Navarro, J. A. R. (2014). Toxic gas removal – metal-organic frameworks for the capture and degradation of toxic gases and vapours. Chem. Soc. Rev., (43), 5419-5430.
Chen, I., Mowat, J. P. S., Jimenez, D. F., Morrison, C. A., Thompson, S. P., Wright, P. A., & Düren, T. (2013). Elucidating the Breathing of the Metal-Organic Framework MIL- 53(Sc) with ab Initio Molecular Dynamics Simulations and in Situ X-ray Powder Diffraction Experiments. J. Am. Chem. Soc., (135), 15763-15773.
Devic, T., Horcajada, P., Serre, C., Salles, F., Maurin, G., Moulin, B., Heurtaux, D., Clet, G., Vimont, A., Grenèche, J. M., Ouay, B. L., Moreau, F., Magnier, E., Filinchuk, Y., Marrot, J., Lavalley, J. C., Daturi, M., & Férey, G. (2010). Functionalization in Flexible Porous Solids: Effects on the Pore Opening and the Host-G uest Interactions. J. Am. Chem. Soc., (132), 1127-1136.
Du, J. J., Yuan, Y. P., Sun, J. X., Peng, F. M., Jiang, X., Qiu, L. G., Xie, A. J., Shen, Y. H., & Zhu, J. F. (2011). New photocatalysts based on MIL-53 metal-organic frameworks for the decolorization of methylene blue dye. Journal of Hazardous Materials, (190), 945-951.
Du, P. D., Danh, H. T., Hoai, P. N., Thanh, N. M., Nguyen, V. T., & Khieu, D. Q. (2020). Heterogeneous UV/Fenton-Like Degradation of Methyl Orange Using Iron Terephthalate MIL-53 Catalyst. Journal of Chemistry, (Volume 2020), Article ID 1474357, 13 pages.
Férey, G. (2008). Hybrid porous solids: past, present, future. Chem. Soc. Rev., (37), 191-214.
Gordon, J., Kazemian, H., & Rohani, S. (2012). Rapid and efficient crystallization of MIL- 53(Fe) by ultrasound and microwave irradiation. Micropor. Mesopor. Mat., (162), 36-43.
He, Y., Zhou, W., Qian, G., & Chen, B. (2014). Methane storage in metal-organic frameworks. Chem. Soc. Rev., (43), 5657-5678.
Horcajada, P., Gref, R., Baati, T., Allan, P. K., Maurin, G., Couveur, P., Férey, G., Morris, R. E., & Serre, C. (2012). Metal-Organic Frameworks in Biomedicine. Chem. Rev., (112), 1232-1268.
Hu, M., Lou, H., Yan, X., Hu, X., Feng. R., & Zhou M. (2018). In-situ frabrication of ZIF-8 decorated layered double oxides oxides for adsorption and photocatalytic degradation of methylene blue. Micropor. Mesopor. Mat., (271), 68-72.
Huang, D., Liu, Y., Liu, Y., Liu, Y., Di, D., Wang, H., & Yang, W. (2019). Preparation of metal- organic frameworks with bimetallic linkers and corresponding properties. New J. Chem., (43), 7243-7250.
Isaeva, V. I., Vedenyapina, M. D., Kulaishin, S. A., Lobova, A. A., Chernyshev, V. V., Kapustin, G. I., Tkachenko, O. P., Vergun, V. V., Arkhipov, D. A., Nissenbaum, V. D., & Kustuv, L. M. (2019). Adsorption of 2,4-dichlorophenoxyacetic acid in an aqueous medium on nanoscale MIL- 53(Al) type materials. Dalton Trans., (48), 15091-15104.
Khieu, D. Q., Thanh, M. T., Thien, T. V., Phong, N. H., Van, D. H., Du, P. D., & Hung, N. P. (2018). Synthesis And Voltammetric Determination Of Pb(II) Using A Zif-8 Based Electrode. Journal of Chemistry, 2018, Article ID 5395106, 12 pages.
Liang, R., Jing, F., Shen, L., Qin, N., & Wu, L. (2015). MIL-53(Fe) as a highly efficient bifunctional photocatalyst for the simultaneous reduction of Cr(VI) and oxidation of dyes. Journal of Hazardous Materials, (287), 364-372.
Liu, J. F., Mu, J. C., Qin, R. X., & Ji, S. F. (2019). Pd nanoparticles immobilized on MIL-53(Al) as highly effective bifunctional catalysts for oxidation of liquid methanol to methyl formate. Petroleum Science, (16), 901-911.
Loiseau, T., Serre, C., Huguenard, C., Fink, G., Taulelle, F., Henry, M., Bataille, T., & Férey, G. (2004). A Rationale for the Large Breathing of the Porous Aluminum Terephthalate (MIL-53) Upon Hydration. Chem. Eur. J., (10), 1373-1382.
Moran, C. M., Joshi, J. N., Marti, R. M., Hayes, S. E., & Walton, K. S. (2018). Structured Growth of Metal-Organic Framework MIL-53(Al) from Solid Alumium Carbide Precursor. J. Am. Chem. Soc., (140, 29), 9148-9153.
Naeimi, S., & Faghihian, H. (2017). Application of novel metal organic framework, MIL-53(Fe) and its magnetic hybrid; for removal of pharmaceutical pollutant, doxycycline from aqueous solutions. Environmental Toxicology and Pharmacology, (53), 121-132.
Nguyen, D. T. C., Le, H. T. N., Do, T. S., Pham, V. T., Tran, D. L., Ho, V. T. T., Tran, T. V., Nguyen, D. C., Nguyen, T. D., Bach, L. G., Ha, H. K. B., & Doan, V. T. (2019). Metal-Organic Framework MIL-53(Fe) as an Adsorbent for Ibuprofen Drug Removal from Aqueous Solutions: Response Surface Modeling and Optimization. Journal of Chemistry, (2019), Article ID 5602957, 11 pages.
Patil, D. V., Rallapalli, P. B. S., Dangi, G. P., Tayade, R. J., Somani, R. S., & Bajaj, H. C. (2011). MIL-53(Al): An Efficient Adsorbent for the Removal of Nitrobenzene from Aqueous Solutions. Ind. Eng. Chem. Res., (50), 10516-10524.
Podkovyrina, Y., Butova, V., Bulanova, E., Budnyk, A., Kremennaya, M., Soldatov, A., & Lamberti, C. (2018). Characterization of local atomic structure in Co/Zn based ZIFs by XAFS. Journal of Physics: Conf. Series, 987, 012-031.
Pu, M., Ma, Y., Wan, J., Wang, J., & Brusseau, M. L. (2017). Activation performance and mechanism of a novel heterogeneous persulfate catalyst: Metal Organic Framework MIL-53(Fe) with FeII/FeIII mixed-valence coordinative unsaturated iron center. Catal. Sci. Technol., 7(5), 1129-1140.
Qian, X., Yadian, B., Wu, R., Long, Y., Zhou, K., Zhu, B., & Huang, Y. (2013). Structure stability of metal-organic framework MIL-53 (Al) in aqueous solutions. International Journal of Hydrogen Energy, (38), 16710-16715.
Rahmani, E., & Rahmani, M. (2018). Al-based MIL-53 Metal Organic Framework (MOF) as the New Catalyst for Friedel-Crafts Alkylation of Benzene. Ind. Eng. Chem. Res., (57, 1), 169-178.
Rallapalli, P., Patil, D., Prasanth, K. P., Somani, R. S., Jasra, R. V., & Bajaj, H. C. (2010). An alternative activation method for the enhancement of methane storage capacity of nanoporous aluminium terephthalate, MIL- 53(Al). J. Porous Mater., (17), 523-528.
Stavila, V., Talin, A. A., & Allendorf, M. D. (2014). MOF-based electronic and optoelectronic devices. Chem. Soc. Rev., (43), 5994-6010.
Thanh, M. T., Thien, T. V., Du, P. D., Hung, N. P., & Khieu, D. Q. (2018). Iron doped zeolitic imidazolate framework (Fe-ZIF-8): synthesis and photocatalytic degradation of RDB dye in Fe-ZIF-8. J. Porous Mater., (25), 857-869.
Trung, T. K., Trens, P., Tanchoux, N., Bourrelly, S., Llewellyn, P. L., Serna, S. L., Serre, C., Loiseau, T., Fajula, F., & Férey, G. (2008). Hydrogen Adsorption in the Flexible Metal Organic Frameworks MIL-53(Al, Cr). J. Am. Chem. Soc., (130), 16926-16932.
Vu, T. A., Le, G. H., Dao, C. D., Dang, L. Q., Nguyen, K. T., Nguyen, Q. K., Dang, P. T., Tran, H. T. K., Duong, Q. T., Nguyen, T. V. & Lee, G. D. (2015). Arsenic removal from aqueous solutions by adsorption using novel MIL-53(Fe) as a highly efficient adsorbent. RSC Adv., (5), 5261-5268.
Wang, Y., Kretschmer, K., Zhang, J., Mondal, A. K., Guo, X. & Wang, G. (2016). Organic sodium terephthalate@graphene hybrid anode materials for sodium-ion batteries. RSC Advances, (6), 57098-57102.
Yilmaz, E., Sert, E., & Atalay, F. S. (2016). Synthesis, characterization of a metal organic framework: MIL-53 (Fe) and adsorption mechanisms of methyl red onto MIL-53 (Fe). Journal of the Taiwan Institute of Chemical Engineers, (65), 323-330.
Most read articles by the same author(s)
- Ngoc Bich Nguyen, Huu Nghi Nguyen, Dinh Thanh Nguyen, Using rice straw to prepare magnetic carbon material for arsenic removal , Dong Thap University Journal of Science: Vol. 11 No. 2 (2022): Natural Sciences Issue (Vietnamese)
- Van Hung Nguyen, Thi Minh Nguyet Bui, Vu Phong Le, Huu Nghi Nguyen, Investigating the capacity of seafood processing wastewater treatment on N, W-codoped TiO2/bentonit photocatalyst , Dong Thap University Journal of Science: No. 32 (2018): Part B - Natural Sciences
- Minh Thao Nguyen, Tho Thanh Bui, Sy Thang Ho, Van Hung Nguyen, Huu Nghi Nguyen, Calculations on the structures of ScGenSc0/- (n = 3, 4) clusters , Dong Thap University Journal of Science: Vol. 11 No. 5 (2022): Natural Sciences Issue (English)
- Dinh Du Pham, Removing Rhodamine B from aqueous solutions by Zn/Fe-doped MIL-53(Al) , Dong Thap University Journal of Science: Vol. 13 No. 2 (2024): Natural Sciences Issue (Vietnamese)