Preparation and characteristics of MIL-53 metal-organic framework material with Al/Fe-bimetallic component
Nội dung chính của bài viết
Tóm tắt
In this study, iron doped MIL-53(Al) metal-organic framework material (denoted as Fe/MIL-53(Al)) was prepared by hydrothermal method. The obtained materials were characterized using X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR), thermogravimetry analysis (TG), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray (EDX), and N2 adsorption/ desorption isotherms. The influence of iron content on the structure of MIL-53(Al) and treated temperature of Fe/MIL-53(Al) were investigated. The results showed that the obtained Fe/MIL-53(Al) synthesized at mole ratio of Fe/Al = 1/9, still maintains many structural properties of the MIL-53 material, and the iron element was evenly distributed over the entire area of the material. The treatment at 280ºC had almost no effect on the metal-organic framework structure of the material. The pore of the material was cleared at the treated temperature of 350ºC; therefore, the specific surface area of the material increased significantly.
Chi tiết bài viết
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Từ khóa
Fe/MIL-53(Al), Metal-organic framework, Bimetallic component, Hydrothermal method
Tài liệu tham khảo
Barea, E., Montoro, C., & Navarro, J. A. R. (2014). Toxic gas removal – metal-organic frameworks for the capture and degradation of toxic gases and vapours. Chem. Soc. Rev., (43), 5419-5430.
Chen, I., Mowat, J. P. S., Jimenez, D. F., Morrison, C. A., Thompson, S. P., Wright, P. A., & Düren, T. (2013). Elucidating the Breathing of the Metal-Organic Framework MIL- 53(Sc) with ab Initio Molecular Dynamics Simulations and in Situ X-ray Powder Diffraction Experiments. J. Am. Chem. Soc., (135), 15763-15773.
Devic, T., Horcajada, P., Serre, C., Salles, F., Maurin, G., Moulin, B., Heurtaux, D., Clet, G., Vimont, A., Grenèche, J. M., Ouay, B. L., Moreau, F., Magnier, E., Filinchuk, Y., Marrot, J., Lavalley, J. C., Daturi, M., & Férey, G. (2010). Functionalization in Flexible Porous Solids: Effects on the Pore Opening and the Host-G uest Interactions. J. Am. Chem. Soc., (132), 1127-1136.
Du, J. J., Yuan, Y. P., Sun, J. X., Peng, F. M., Jiang, X., Qiu, L. G., Xie, A. J., Shen, Y. H., & Zhu, J. F. (2011). New photocatalysts based on MIL-53 metal-organic frameworks for the decolorization of methylene blue dye. Journal of Hazardous Materials, (190), 945-951.
Du, P. D., Danh, H. T., Hoai, P. N., Thanh, N. M., Nguyen, V. T., & Khieu, D. Q. (2020). Heterogeneous UV/Fenton-Like Degradation of Methyl Orange Using Iron Terephthalate MIL-53 Catalyst. Journal of Chemistry, (Volume 2020), Article ID 1474357, 13 pages.
Férey, G. (2008). Hybrid porous solids: past, present, future. Chem. Soc. Rev., (37), 191-214.
Gordon, J., Kazemian, H., & Rohani, S. (2012). Rapid and efficient crystallization of MIL- 53(Fe) by ultrasound and microwave irradiation. Micropor. Mesopor. Mat., (162), 36-43.
He, Y., Zhou, W., Qian, G., & Chen, B. (2014). Methane storage in metal-organic frameworks. Chem. Soc. Rev., (43), 5657-5678.
Horcajada, P., Gref, R., Baati, T., Allan, P. K., Maurin, G., Couveur, P., Férey, G., Morris, R. E., & Serre, C. (2012). Metal-Organic Frameworks in Biomedicine. Chem. Rev., (112), 1232-1268.
Hu, M., Lou, H., Yan, X., Hu, X., Feng. R., & Zhou M. (2018). In-situ frabrication of ZIF-8 decorated layered double oxides oxides for adsorption and photocatalytic degradation of methylene blue. Micropor. Mesopor. Mat., (271), 68-72.
Huang, D., Liu, Y., Liu, Y., Liu, Y., Di, D., Wang, H., & Yang, W. (2019). Preparation of metal- organic frameworks with bimetallic linkers and corresponding properties. New J. Chem., (43), 7243-7250.
Isaeva, V. I., Vedenyapina, M. D., Kulaishin, S. A., Lobova, A. A., Chernyshev, V. V., Kapustin, G. I., Tkachenko, O. P., Vergun, V. V., Arkhipov, D. A., Nissenbaum, V. D., & Kustuv, L. M. (2019). Adsorption of 2,4-dichlorophenoxyacetic acid in an aqueous medium on nanoscale MIL- 53(Al) type materials. Dalton Trans., (48), 15091-15104.
Khieu, D. Q., Thanh, M. T., Thien, T. V., Phong, N. H., Van, D. H., Du, P. D., & Hung, N. P. (2018). Synthesis And Voltammetric Determination Of Pb(II) Using A Zif-8 Based Electrode. Journal of Chemistry, 2018, Article ID 5395106, 12 pages.
Liang, R., Jing, F., Shen, L., Qin, N., & Wu, L. (2015). MIL-53(Fe) as a highly efficient bifunctional photocatalyst for the simultaneous reduction of Cr(VI) and oxidation of dyes. Journal of Hazardous Materials, (287), 364-372.
Liu, J. F., Mu, J. C., Qin, R. X., & Ji, S. F. (2019). Pd nanoparticles immobilized on MIL-53(Al) as highly effective bifunctional catalysts for oxidation of liquid methanol to methyl formate. Petroleum Science, (16), 901-911.
Loiseau, T., Serre, C., Huguenard, C., Fink, G., Taulelle, F., Henry, M., Bataille, T., & Férey, G. (2004). A Rationale for the Large Breathing of the Porous Aluminum Terephthalate (MIL-53) Upon Hydration. Chem. Eur. J., (10), 1373-1382.
Moran, C. M., Joshi, J. N., Marti, R. M., Hayes, S. E., & Walton, K. S. (2018). Structured Growth of Metal-Organic Framework MIL-53(Al) from Solid Alumium Carbide Precursor. J. Am. Chem. Soc., (140, 29), 9148-9153.
Naeimi, S., & Faghihian, H. (2017). Application of novel metal organic framework, MIL-53(Fe) and its magnetic hybrid; for removal of pharmaceutical pollutant, doxycycline from aqueous solutions. Environmental Toxicology and Pharmacology, (53), 121-132.
Nguyen, D. T. C., Le, H. T. N., Do, T. S., Pham, V. T., Tran, D. L., Ho, V. T. T., Tran, T. V., Nguyen, D. C., Nguyen, T. D., Bach, L. G., Ha, H. K. B., & Doan, V. T. (2019). Metal-Organic Framework MIL-53(Fe) as an Adsorbent for Ibuprofen Drug Removal from Aqueous Solutions: Response Surface Modeling and Optimization. Journal of Chemistry, (2019), Article ID 5602957, 11 pages.
Patil, D. V., Rallapalli, P. B. S., Dangi, G. P., Tayade, R. J., Somani, R. S., & Bajaj, H. C. (2011). MIL-53(Al): An Efficient Adsorbent for the Removal of Nitrobenzene from Aqueous Solutions. Ind. Eng. Chem. Res., (50), 10516-10524.
Podkovyrina, Y., Butova, V., Bulanova, E., Budnyk, A., Kremennaya, M., Soldatov, A., & Lamberti, C. (2018). Characterization of local atomic structure in Co/Zn based ZIFs by XAFS. Journal of Physics: Conf. Series, 987, 012-031.
Pu, M., Ma, Y., Wan, J., Wang, J., & Brusseau, M. L. (2017). Activation performance and mechanism of a novel heterogeneous persulfate catalyst: Metal Organic Framework MIL-53(Fe) with FeII/FeIII mixed-valence coordinative unsaturated iron center. Catal. Sci. Technol., 7(5), 1129-1140.
Qian, X., Yadian, B., Wu, R., Long, Y., Zhou, K., Zhu, B., & Huang, Y. (2013). Structure stability of metal-organic framework MIL-53 (Al) in aqueous solutions. International Journal of Hydrogen Energy, (38), 16710-16715.
Rahmani, E., & Rahmani, M. (2018). Al-based MIL-53 Metal Organic Framework (MOF) as the New Catalyst for Friedel-Crafts Alkylation of Benzene. Ind. Eng. Chem. Res., (57, 1), 169-178.
Rallapalli, P., Patil, D., Prasanth, K. P., Somani, R. S., Jasra, R. V., & Bajaj, H. C. (2010). An alternative activation method for the enhancement of methane storage capacity of nanoporous aluminium terephthalate, MIL- 53(Al). J. Porous Mater., (17), 523-528.
Stavila, V., Talin, A. A., & Allendorf, M. D. (2014). MOF-based electronic and optoelectronic devices. Chem. Soc. Rev., (43), 5994-6010.
Thanh, M. T., Thien, T. V., Du, P. D., Hung, N. P., & Khieu, D. Q. (2018). Iron doped zeolitic imidazolate framework (Fe-ZIF-8): synthesis and photocatalytic degradation of RDB dye in Fe-ZIF-8. J. Porous Mater., (25), 857-869.
Trung, T. K., Trens, P., Tanchoux, N., Bourrelly, S., Llewellyn, P. L., Serna, S. L., Serre, C., Loiseau, T., Fajula, F., & Férey, G. (2008). Hydrogen Adsorption in the Flexible Metal Organic Frameworks MIL-53(Al, Cr). J. Am. Chem. Soc., (130), 16926-16932.
Vu, T. A., Le, G. H., Dao, C. D., Dang, L. Q., Nguyen, K. T., Nguyen, Q. K., Dang, P. T., Tran, H. T. K., Duong, Q. T., Nguyen, T. V. & Lee, G. D. (2015). Arsenic removal from aqueous solutions by adsorption using novel MIL-53(Fe) as a highly efficient adsorbent. RSC Adv., (5), 5261-5268.
Wang, Y., Kretschmer, K., Zhang, J., Mondal, A. K., Guo, X. & Wang, G. (2016). Organic sodium terephthalate@graphene hybrid anode materials for sodium-ion batteries. RSC Advances, (6), 57098-57102.
Yilmaz, E., Sert, E., & Atalay, F. S. (2016). Synthesis, characterization of a metal organic framework: MIL-53 (Fe) and adsorption mechanisms of methyl red onto MIL-53 (Fe). Journal of the Taiwan Institute of Chemical Engineers, (65), 323-330.
Các bài báo được đọc nhiều nhất của cùng tác giả
- Nguyễn Ngọc Bích, Nguyễn Hữu Nghị, Nguyễn Đình Thành, Nghiên cứu xử lý arsenic trong nước bằng vật liệu carbon từ tính tổng hợp từ nguồn thải rơm rạ , Tạp chí Khoa học Đại học Đồng Tháp: Tập 11 Số 2 (2022): Chuyên san Khoa học Tự nhiên (Tiếng Việt)
- Nguyễn Văn Hưng, Bùi Thị Minh Nguyệt, Lê Vũ Phong, Nguyễn Hữu Nghị, Khảo sát khả năng xử lý nước thải chế biến thủy sản trên chất quang xúc tác N, W-TiO2/Bentonit , Tạp chí Khoa học Đại học Đồng Tháp: Số 32 (2018): Phần B - Khoa học Tự nhiên
- Nguyen Minh Thao, Bui Tho Thanh, Ho Sy Thang, Nguyen Van Hung, Nguyen Huu Nghi, Calculations on the structures of ScGenSc0/- (n = 3, 4) clusters , Tạp chí Khoa học Đại học Đồng Tháp: Tập 11 Số 5 (2022): Chuyên san Khoa học Tự nhiên (Tiếng Anh)
- Phạm Đình Dũ, Loại bỏ Rhodamine B trong dung dịch nước bằng MIL-53(Al) pha tạp Zn/Fe , Tạp chí Khoa học Đại học Đồng Tháp: Tập 13 Số 2 (2024): Chuyên san Khoa học Tự nhiên (Tiếng Việt)