Sự tồn tại và xấp xỉ điểm bất động của ánh xạ đơn điệu thỏa mãn điều kiện (E) trong không gian Banach sắp thứ tự
Nội dung chính của bài viết
Tóm tắt
Trong bài báo này, chúng tôi giới thiệu khái niệm ánh xạ đơn điệu thỏa mãn điều kiện (E) trong không gian Banach sắp thứ tự, thiết lập sự tồn tại và xấp xỉ điểm bất động của lớp ánh xạ này bởi dãy lặp Mann trong không gian Banach lồi đều sắp thứ tự. Các kết quả này là những mở rộng của kết quả chính trong [4], [6], [7]. Đồng thời, chúng tôi cũng xây dựng ví dụ minh họa cho kết quả đạt được.
Chi tiết bài viết
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Từ khóa
Ánh xạ đơn điệu thỏa mãn điều kiện (E), dãy lặp Mann, không gian Banach sắp thứ tự
Tài liệu tham khảo
[2]. M. Bachar and M. A. Khamsi (2015), “On common approximate fixed points of monotone nonexpansive semigroups in Banach spaces”, Fixed Point Theory Appl., (2015:160), p. 1-12.
[3]. B. Beauzamy (1982), Introduction to Banach spaces and their geometry, North-Holland, Amsterdam.
[4]. B. A. B. Dehaish and M. A. Khamsi (2015), “Mann iteration process for monotone nonexpansive mappings”, Fixed Point Theory Appl., (2015:177), p. 1-8.
[5]. E. L. Dozo (1973), “Multivalued nonexpansive mappings and Opial's condition”, Proc. Amer. Math. Soc., 38 (2), p. 286-292.
[6]. J. Garcia-Falset, E. Llorens-Fuster, and T. Suzuki (2011), “Fixed point theory for a class of generalized nonexpansive mappings”, J. Math. Anal. Appl., 375 (1), p. 185-195.
[7]. Y. Song, P. Kumam, and Y. J. Cho (2016), “Fixed point theorems and iterative approximations for monotone nonexpansive mappings in ordered Banach spaces”, Fixed Point Theory Appl., (2016:73), p. 1-11.
[8]. Y. Song, K. Promluang, P. Kumam, and Y. J. Cho (2016), “Some convergence theorems of the Mann iteration for monotone a-nonexpansive mappings”, Appl. Math. Comput., (287-288), p. 74-82.
[9]. W. Takahashi (2000), Nonlinear functional analysis: Fixed point theory and its applications, Yokohama Publishers Inc., Yokohama.
[10]. H. K. Xu (1991), “Inequality in Banach space with applications”, Nonlinear Anal., (16), p. 1127-1138.
Các bài báo được đọc nhiều nhất của cùng tác giả
- Trương Cẩm Tiên, Nguyễn Trung Hiếu, Sự hội tụ của dãy lặp hỗn hợp cho bài toán cân bằng và ánh xạ thỏa mãn điều kiện (ø-Eµ) trong không gian banach trơn đều và lồi đều , Tạp chí Khoa học Đại học Đồng Tháp: Số 27 (2017): Phần B - Khoa học Tự nhiên
- Cao Phạm Cẩm Tú, Nguyễn Trung Hiếu, Sự hội tụ của dãy lặp hai bước đến điểm bất động chung của hai ánh xạ G-không giãn tiệm cận trong không gian Banach với đồ thị , Tạp chí Khoa học Đại học Đồng Tháp: Tập 9 Số 3 (2020): Chuyên san Khoa học Tự nhiên (Tiếng Việt)
- Huynh Thi Be Trang, Nguyen Trung Hieu, Convergence of mann iteration process to a fixed point of (α,β) - nonexpansive mappings in Lp spaces , Tạp chí Khoa học Đại học Đồng Tháp: Tập 9 Số 5 (2020): Chuyên san Khoa học Tự nhiên (Tiếng Anh)
- Nguyễn Trung Hiếu, Về định lí điểm bất động trên không gian S-mêtric thứ tự bộ phận , Tạp chí Khoa học Đại học Đồng Tháp: Số 3 (2013): Phần B - Khoa học Tự nhiên
- Huỳnh Diễm Ngọc, Nguyễn Trung Hiếu, Sự hội tụ của thuật toán lai ghép cho ánh xạ α-không giãn trong không gian Hilbert , Tạp chí Khoa học Đại học Đồng Tháp: Số 25 (2017): Phần B - Khoa học Tự nhiên
- Nguyễn Trung Hiếu, Hồ Quốc Ái, Về định lí điểm bất động cho lớp ánh xạ Meir-Keeler -co trên không gian Kiểu b-mêtric , Tạp chí Khoa học Đại học Đồng Tháp: Số 9 (2014): Phần B - Khoa học Tự nhiên
- Nguyễn Trung Hiếu, Hoàng Hiền Hưởng, Về định lí điểm bất động chung cho ánh xạ trong không gian kiểu-mêtric , Tạp chí Khoa học Đại học Đồng Tháp: Số 8 (2014): Phần B - Khoa học Tự nhiên
- Nguyễn Trung Hiếu, Nguyễn Thị Vui, Về định lí điểm bất động cho lớp ánh xạ C-co yếu trong không gian S-mêtric sắp thứ tự , Tạp chí Khoa học Đại học Đồng Tháp: Số 7 (2014): Phần B - Khoa học Tự nhiên
- Nguyễn Kim Ngoan, Nguyễn Trung Hiếu, Sự hội tụ của dãy lặp kiểu Agarwal đến điểm bất động chung của hai ánh xạ α-không giãn suy rộng trong không gian Banach lồi đều , Tạp chí Khoa học Đại học Đồng Tháp: Số 37 (2019): Phần B - Khoa học Tự nhiên
- Đoàn Thị Kiều Ngân, Nguyễn Trung Hiếu, Định lí điểm bất động chung của ánh xạ - co yếu phi tuyến tính trong không gian kiểu-mêtric sắp thứ tự , Tạp chí Khoa học Đại học Đồng Tháp: Số 13 (2015): Phần B - Khoa học Tự nhiên