An investigation on the adsorption of methylene blue from water by MnFe2O4-modified diatomite
Nội dung chính của bài viết
Tóm tắt
The MnFe2O4/diatomite was obtained by wet chemical methods. The specific structure of the material has been determined by modern physicochemical methods. The results showed that the surface of diatomite was coated by the manganese/iron oxide nanoparticles. The prepared MnFe2O4/diatomite material is a good adsorbent for the removal methylene blue (MB) in water. The adsorption kinetics of MB on modulation materials are consistent with the pseudo-second-order kinetics model. The adsorption isotherms well followed the Langmuir isotherm model and maximal adsorption capacity of MB can read 151.52 mg/g at 323K. The adsorption behavior of MnFe2O4/modified is an endothermic and spontaneous process. The results show that MnFe2O4/diatomite is a promising adsorbent for the efficient removal of cationic dyes from wastewater.
Chi tiết bài viết
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Từ khóa
Adsorption, diatomite, dye, MnFe2O4/diatomite
Tài liệu tham khảo
Azha, S. F., Sellaoui, L., Engku Yunus, E. H., Yee, C. J., Bonilla-Petriciolet, A., Ben Lamine, A., & Ismail, S. (2019). Iron-modified composite adsorbent coating for azo dye removal and its regeneration by photo-Fenton process: Synthesis, characterization and adsorption mechanism interpretation. Chemical Engineering Journal, 361, 31-40. DOI: 10.1016/j.cej.2018.12.050.
Bayramoglu, G., Altintas, B., & Arica, M. Y. (2009). Adsorption kinetics and thermodynamic parameters of cationic dyes from aqueous solutions by using a new strong cation-exchange resin. Chemical Engineering Journal, 152(2-3), 339-346. DOI: 10.1016/j.cej.2009.04.051.
Belachew, N., & Bekele, G. (2020). Synergy of magnetite intercalated bentonite for enhanced adsorption of congo red dye. Silicon, 12(3), 603-612. DOI: 10.1007/s12633-019-00152-2.
Bui, V. T., Huynh, T. T. D., Tran, T. X. M., & Nguyen, M. T. (2021). An investigation on the adsorption of methyl orange from water by MnO2-modified diatomite. Vietnam Journal of Catalysis and Adsorption, 10(3), 16-25. DOI: 10.51316/jca.2021.023.
Chang, F., Qu, J., Liu, H., Liu, R., & Zhao, X. (2009). Fe–Mn binary oxide incorporated into diatomite as an adsorbent for arsenite removal: Preparation and evaluation. Journal of Colloid and Interface Science, 338(2), 353-358. DOI: 10.1016/j.jcis.2009.06.049.
Dai, D., Liang, H., He, D., Potgieter, H., & Li, M. (2021). Mn-doped Fe2O3/diatomite granular composite as an efficient Fenton catalyst for rapid degradation of an organic dye in solution. Journal of Sol-Gel Science and Technology, 97(2), 329-339. DOI: 10.1007/s10971-020-05452-3.
Dang, T.-D., Banerjee, A. N., Tran, Q.-T., & Roy, S. (2016). Fast degradation of dyes in water using manganese-oxide-coated diatomite for environmental remediation. Journal of Physics and Chemistry of Solids, 98, 50-58. DOI: 10.1016/j.jpcs.2016.06.006.
Elmoubarki, R., Mahjoubi, F., Tounsadi, H., Moustadraf, J., Abdennouri, M., Zouhri, A., El Albani, A., & Barka, N. (2015). Adsorption of textile dyes on raw and decanted Moroccan clays: kinetics, equilibrium and thermodynamics. Water resources and industry, 9, 16-29. DOI: 10.1016/j.wri.2014.11.001.
Ge, F., Ye, H., Li, M.-M., & Zhao, B.-X. (2012). Efficient removal of cationic dyes from aqueous solution by polymer-modified magnetic nanoparticles. Chemical Engineering Journal, 198, 11-17. DOI: 10.1016/j.cej.2012.05.074.
Gonawala, K. H., & Mehta, M. J. (2014). Removal of color from different dye wastewater by using ferric oxide as an adsorbent. International Journal of engineering Research and Applications, 4(5), 102-109.
Guibal, E., & Roussy, J. (2007). Coagulation and flocculation of dye-containing solutions using a biopolymer (Chitosan). Reactive and functional polymers, 67(1), 33-42. DOI: 10.1016/j.reactfunctpolym.2006.08.008.
He, Y., Jiang, D. B., Jiang, D. Y., Chen, J., & Zhang, Y. X. (2018). Evaluation of MnO2-templated iron oxide-coated diatomites for their catalytic performance in heterogeneous photo Fenton-like system. Journal of Hazardous Materials, 344, 230-240. DOI: 10.1016/j.jhazmat.2017.10.018.
Islam, M. A., Ali, I., Karim, S. M. A., Hossain Firoz, M. S., Chowdhury, A.-N., Morton, D. W., & Angove, M. J. (2019). Removal of dye from polluted water using novel nano manganese oxide-based materials. Journal of Water Process Engineering, 32, 100911. DOI: 10.1016/j.jwpe.2019.100911.
Kornaros, M., & Lyberatos, G. (2006). Biological treatment of wastewaters from a dye manufacturing company using a trickling filter. Journal of Hazardous Materials, 136(1), 95-102. DOI: 10.1016/j.jhazmat.2005.11.018.
Li, C., Zhong, H., Wang, S., Xue, J., & Zhang, Z. (2015). Removal of basic dye (methylene blue) from aqueous solution using zeolite synthesized from electrolytic manganese residue. Journal of Industrial and Engineering Chemistry, 23, 344-352. DOI: 10.1016/j.jiec.2014.08.038.
Liang, H., Zhou, S., Chen, Y., Zhou, F., & Yan, C. (2015). Diatomite coated with Fe2O3 as an efficient heterogeneous catalyst for degradation of organic pollutant. Journal of the Taiwan Institute of Chemical Engineers, 49, 105-112. DOI: 10.1016/j.jtice.2014.11.002.
Meshko, V., Markovska, L., Mincheva, M., & Rodrigues, A. (2001). Adsorption of basic dyes on granular acivated carbon and natural zeolite. Water research, 35(14), 3357-3366. DOI: 10.1016/S0043-1354(01)00056-2.
Pan, B., Qiu, H., Pan, B., Nie, G., Xiao, L., Lv, L., Zhang, W., Zhang, Q., & Zheng, S. (2010). Highly efficient removal of heavy metals by polymer-supported nanosized hydrated Fe (III) oxides: behavior and XPS study. Water Research, 44(3), 815-824. DOI: 10.1016/j.watres.2009.10.027.
Pang, J., Fu, F., Li, W., Zhu, L., & Tang, B. (2019). Fe-Mn binary oxide decorated diatomite for rapid decolorization of methylene blue with H2O2. Applied Surface Science, 478, 54-61. DOI: 10.1016/j.apsusc.2019.01.191.
Ramírez-Aparicio, J., Samaniego-Benítez, J. E., Murillo-Tovar, M. A., Benítez-Benítez, J. L., Muñoz-Sandoval, E., & García-Betancourt, M. L. (2021). Removal and surface photocatalytic degradation of methylene blue on carbon nanostructures. Diamond and Related Materials, 119, 108544. DOI: 10.1016/j.diamond.2021.108544.
Son, B. H. D. (2017). Phu Yen diatomite: modification and ít application to catalyst and adsorption. Hue University - College of Science, Vietnam.
Son, B. H. D., Mai, V. Q., Du, D. X., Phong, N. H., Cuong, N. D., & Khieu, D. Q. (2016). Catalytic wet peroxide oxidation of phenol solution over Fe–Mn binary oxides diatomite composite. Journal of Porous Materials, 24, 601-611. DOI: 10.1007/s10934-016-0296-7.
Sun, Z., Yao, G., Liu, M., & Zheng, S. (2017). In situ synthesis of magnetic MnFe2O4/diatomite nanocomposite adsorbent and its efficient removal of cationic dyes. Journal of the Taiwan Institute of Chemical Engineers, 71, 501-509. DOI: 10.1016/j.jtice.2016.12.013.
Supelano, G., Cuaspud, J. G., Moreno-Aldana, L. C., Ortiz, C., Trujillo, C., Palacio, C., Vargas, C. P., & Gómez, J. M. (2020). Synthesis of magnetic zeolites from recycled fly ash for adsorption of methylene blue. Fuel, 263, 116800. DOI: 10.1016/j.fuel.2019.116800.
Tseng, R.-L., & Tseng, S.-K. (2005). Pore structure and adsorption performance of the KOH-activated carbons prepared from corncob. Journal of Colloid and interface Science, 287(2), 428-437. DOI: 10.1016/j.jcis.2005.02.033.
Yu, T. T., Li, K. L., Guo, X. L., Li, F., Huang, J. M., & Zhang, Y. X. (2015). Facile decolorization of methylene blue by morphology-dependence δ-MnO2 nanosheets -modified diatomite. Journal of Physics and Chemistry of Solids, 87, 196-202. DOI: 10.1016/j.jpcs.2015.08.013.
Các bài báo được đọc nhiều nhất của cùng tác giả
- Trần Thị Mỹ Nhân, Nguyễn Minh Thảo, Trần Quốc Trị, Trần Văn Tân, Nghiên cứu các trạng thái electron của các cluster MnB20/−/+ , Tạp chí Khoa học Đại học Đồng Tháp: Số 40 (2019): Phần B - Khoa học Tự nhiên
- Lê Tấn Tài, Đường Thanh Luận, Bùi Văn Thắng, Nghiên cứu điều chế vật liệu bentonit lai vô cơ - hữu cơ và ứng dụng xử lý xanh methylen và phosphat trong nước , Tạp chí Khoa học Đại học Đồng Tháp: Số 31 (2018): Phần B - Khoa học Tự nhiên
- Trần Văn Trận, Trần Quốc Trị, Nguyễn Minh Thảo, Phan Trung Cang, Trần Văn Tân, Phân tích phổ quang electron của cluster MnS- bằng hóa học lượng tử tính toán , Tạp chí Khoa học Đại học Đồng Tháp: Số 21 (2016): Phần B - Khoa học Tự nhiên
- Trần Thị Xuân Mai, Trần Việt Dũng, Bùi Văn Thắng, Khảo sát khả năng hấp phụ phenol đỏ và Mn(II) trong nước bằng vật liệu CTAB/Al-bentonit , Tạp chí Khoa học Đại học Đồng Tháp: Tập 9 Số 3 (2020): Chuyên san Khoa học Tự nhiên (Tiếng Việt)
- Bùi Văn Thắng, Nguyễn Thị Thuỳ Trang, Khảo sát hấp phụ Cu2+ bằng vật liệu bentonit và bentonit hoạt hóa: ảnh hưởng của lượng chất hấp phụ, nồng độ ban đầu và đẳng nhiệt hấp phụ , Tạp chí Khoa học Đại học Đồng Tháp: Số 14 (2015): Phần B - Khoa học Tự nhiên
- Trần Văn Trận, Trần Quốc Trị, Nguyễn Minh Thảo, Phan Trung Cang, Trần Văn Tân, Nghiên cứu cấu trúc hình học và cấu trúc electron của cluster MnS3-/0 bằng hóa học tính toán và giải thích phổ quang electron của cluster anion , Tạp chí Khoa học Đại học Đồng Tháp: Số 23 (2016): Phần B - Khoa học Tự nhiên
- Bùi Văn Thắng, Nghiên cứu điều chế và đặc trưng cấu trúc của vật liệu bentonit biến tính nhôm , Tạp chí Khoa học Đại học Đồng Tháp: Số 7 (2014): Phần B - Khoa học Tự nhiên
- Bùi Văn Thắng, Nguyễn Thị Lệ Vân, Ảnh hưởng nồng độ cetyl trimetylamoni bromua đến cấu trúc vật liệu bentonit hữu cơ , Tạp chí Khoa học Đại học Đồng Tháp: Số 12 (2015): Phần B - Khoa học Tự nhiên