Common fixed point theorems for generalized weak -contraction mappings in partially ordered 2 -metric spaces
Main Article Content
Abstract
In this paper, we introduce the notions of a weak -contraction mapping, a generalized weak -contraction mapping in partially ordered -metric spaces and establish some common fixed point theorems for these two classes of mappings. These results are the generalizations of the main results in [4] and [7]. We also provide some illustrated examples for the obtained results.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Keywords
common fixed point, T -weakly isotone increasing mappings, generalized weak (,, ) ψ S C -contraction mappings, orbitally complete 2 -metric spaces
References
[2]. S. K. Chatterjea (1972), “Fixed point theorems”, Rend. Acad. Bulgare. Sci.(25), p. 727-730.
[3]. B. S. Choudhury (2009), “Unique fixed point theorem for weakly C -contractive mapping”, Kathmandu Univ. J. Sci. Engi. Tech., 5 (1), p. 6-13.
[4]. N. V. Dung and V. T. L. Hang (2013), “Fixed point theorems for weak C -contractions in partially ordered 2 -metric spaces”, Fixed Point Theory Appl., (2013:161), p. 1-12.
[5]. S. Gähler (1963), “ 2 -metrische Räume und ihre topologische Struktur”, Math. Nachr., (26), p. 115-118.
[6]. J. Harjani, B. López, and K. Sadarangani (2011), “Fixed point theorems for weakly C -contractive mappings in ordered metric spaces”, Comput. Math. Appl., (61), p. 790-796.
[7]. H. K. Nashine (2014), “Common fixed point via weakly (,, ) ψ S C -contraction mappings on ordered metric spaces and application to intergral equation”, Thai. J. Math., 12 (3), p. 729-747.
[8]. B. E. Rhoades (1977), “A comparison of various definitions of contractive mappings”, Trans. Amer. Math. Soc., (226), p. 257-290.
Most read articles by the same author(s)
- Cam Tien Truong, Trung Hieu Nguyen, Convergence of hybrid iteration for equilibrium problems and mappings satisfying condition (ø-Eµ) in uniformly convex and uniformly smooth banach spaces , Dong Thap University Journal of Science: No. 27 (2017): Part B - Natural Sciences
- Pham Cam Tu Cao, Trung Hieu Nguyen, Convergence of a two-step iteration process to common fixed points of two asymptotically g-nonexpansive mappings in Banach spaces with graphs , Dong Thap University Journal of Science: Vol. 9 No. 3 (2020): Natural Sciences Issue (Vietnamese)
- Trung Hieu Nguyen, Về định lí điểm bất động trên không gian S-mêtric thứ tự bộ phận , Dong Thap University Journal of Science: No. 3 (2013): Part B - Natural Sciences
- Thi Be Trang Huynh, Trung Hieu Nguyen, Convergence of mann iteration process to a fixed point of (α,β) - nonexpansive mappings in Lp spaces , Dong Thap University Journal of Science: Vol. 9 No. 5 (2020): Natural Sciences Issue (English)
- Diem Ngoc Huynh, Trung Hieu Nguyen, Covergence of hybrid algorithms for α-nonexpansive mappings in Hilbert spaces , Dong Thap University Journal of Science: No. 25 (2017): Part B - Natural Sciences
- Trung Hieu Nguyen, Quoc Ai Ho, Về định lí điểm bất động cho lớp ánh xạ Meir-Keeler -co trên không gian Kiểu b-mêtric , Dong Thap University Journal of Science: No. 9 (2014): Part B - Natural Sciences
- Trung Hieu Nguyen, Hien Huong Hoang, Về định lí điểm bất động chung cho ánh xạ trong không gian kiểu-mêtric , Dong Thap University Journal of Science: No. 8 (2014): Part B - Natural Sciences
- Trung Hieu Nguyen, Thi Vui Nguyen, Về định lí điểm bất động cho lớp ánh xạ C-co yếu trong không gian S-mêtric sắp thứ tự , Dong Thap University Journal of Science: No. 7 (2014): Part B - Natural Sciences
- Kim Ngoan Nguyen, Trung Hieu Nguyen, Convergence of agarwal-type iteration process to common fixed points of two generalized -nonexpansive mappings in uniformly convex Banach spaces , Dong Thap University Journal of Science: No. 37 (2019): Part B - Natural Sciences
- Thi Kieu Ngan Doan, Trung Hieu Nguyen, Some common fixed point theorems for -weak nonlinear contraction in partially ordered metric-type spaces , Dong Thap University Journal of Science: No. 13 (2015): Part B - Natural Sciences