Fixed point theorems for generalized pata-type contractions in partially ordered b-metric spaces
Main Article Content
Abstract
In this paper, we extend the generalized Pata-type contraction mentioned in [7] to partially ordered b-metric spaces and state certain fixed point theorems for new contractions. We also come up with some corollaries and provide relevant examples.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Keywords
Fixed point, partially ordered b-metric spaces, generalized Pata-type contractions.
References
[1]. A. Aghajani, M. Abbas, and J. R. Roshan (2014), “Common fixed point of generalized weak contractive mappings in partially ordered b -metric spaces”, Math. Slovaca, 64 (4), p. 941-960.
[2]. T. V. An, N. V. Dung, Z. Kadelburg, and S. Radenovic (2015), “Various generalizations of metric spaces and fixed point theorems”, Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Mat.RACSAM, (109), p. 175-198.
[3]. S. Balasubramanian (2014), “A Pata-type fixed point theorem”, Math. Sci., p. 1-5.
[4]. P. Collaco and J. C. E. Silva (1997), “A complete comparison of 25 contraction conditions”,
Nonlinear Anal., 30 (1), p. 471-476.
[5]. S. Czerwik (1998), “Nonlinear set-valued contraction mappings in b -metric spaces”, Atti Semin. Mat. Fis. Univ. Modena, 46 (2), p. 263-276.
[6]. M. Eshaghi, S. Mohseni, M. R. Delavar, M. D. L. Sen, G. H. Kim, and A. Arian (2014), “Pata contractions and coupled type fixed point”, Fixed Point Theory Appl., (2014:130), p. 1-10.
[7]. Z. Kadelburg and S. Radennovic (2014), “Fixed point and tripled fixed point theorems under Pata-type conditions in ordered metric paces”, Int. J. Anal. Appl., 6 (1), p. 113-122.
[8]. V. Pata (2011), “A fixed point theorem in metric spaces”, J. Fixed Point Theory Appl., (10), p. 299-305.
[2]. T. V. An, N. V. Dung, Z. Kadelburg, and S. Radenovic (2015), “Various generalizations of metric spaces and fixed point theorems”, Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Mat.RACSAM, (109), p. 175-198.
[3]. S. Balasubramanian (2014), “A Pata-type fixed point theorem”, Math. Sci., p. 1-5.
[4]. P. Collaco and J. C. E. Silva (1997), “A complete comparison of 25 contraction conditions”,
Nonlinear Anal., 30 (1), p. 471-476.
[5]. S. Czerwik (1998), “Nonlinear set-valued contraction mappings in b -metric spaces”, Atti Semin. Mat. Fis. Univ. Modena, 46 (2), p. 263-276.
[6]. M. Eshaghi, S. Mohseni, M. R. Delavar, M. D. L. Sen, G. H. Kim, and A. Arian (2014), “Pata contractions and coupled type fixed point”, Fixed Point Theory Appl., (2014:130), p. 1-10.
[7]. Z. Kadelburg and S. Radennovic (2014), “Fixed point and tripled fixed point theorems under Pata-type conditions in ordered metric paces”, Int. J. Anal. Appl., 6 (1), p. 113-122.
[8]. V. Pata (2011), “A fixed point theorem in metric spaces”, J. Fixed Point Theory Appl., (10), p. 299-305.
Most read articles by the same author(s)
- Trung Hieu Nguyen, Fixed point theorems for contractions of rational type in ordered rectangular metric spaces , Dong Thap University Journal of Science: No. 12 (2015): Part B - Natural Sciences
- Cam Tien Truong, Trung Hieu Nguyen, Convergence of hybrid iteration for equilibrium problems and mappings satisfying condition (ø-Eµ) in uniformly convex and uniformly smooth banach spaces , Dong Thap University Journal of Science: No. 27 (2017): Part B - Natural Sciences
- Pham Cam Tu Cao, Trung Hieu Nguyen, Convergence of a two-step iteration process to common fixed points of two asymptotically g-nonexpansive mappings in Banach spaces with graphs , Dong Thap University Journal of Science: Vol. 9 No. 3 (2020): Natural Sciences Issue (Vietnamese)
- Trung Hieu Nguyen, Về định lí điểm bất động trên không gian S-mêtric thứ tự bộ phận , Dong Thap University Journal of Science: No. 3 (2013): Part B - Natural Sciences
- Thi Be Trang Huynh, Trung Hieu Nguyen, Convergence of mann iteration process to a fixed point of (α,β) - nonexpansive mappings in Lp spaces , Dong Thap University Journal of Science: Vol. 9 No. 5 (2020): Natural Sciences Issue (English)
- Diem Ngoc Huynh, Trung Hieu Nguyen, Covergence of hybrid algorithms for α-nonexpansive mappings in Hilbert spaces , Dong Thap University Journal of Science: No. 25 (2017): Part B - Natural Sciences
- Trung Hieu Nguyen, Quoc Ai Ho, Về định lí điểm bất động cho lớp ánh xạ Meir-Keeler -co trên không gian Kiểu b-mêtric , Dong Thap University Journal of Science: No. 9 (2014): Part B - Natural Sciences
- Trung Hieu Nguyen, Hien Huong Hoang, Về định lí điểm bất động chung cho ánh xạ trong không gian kiểu-mêtric , Dong Thap University Journal of Science: No. 8 (2014): Part B - Natural Sciences
- Trung Hieu Nguyen, Thi Vui Nguyen, Về định lí điểm bất động cho lớp ánh xạ C-co yếu trong không gian S-mêtric sắp thứ tự , Dong Thap University Journal of Science: No. 7 (2014): Part B - Natural Sciences
- Kim Ngoan Nguyen, Trung Hieu Nguyen, Convergence of agarwal-type iteration process to common fixed points of two generalized -nonexpansive mappings in uniformly convex Banach spaces , Dong Thap University Journal of Science: No. 37 (2019): Part B - Natural Sciences