Calculations on the structures of MnB9 clusters and its interaction with H2

Trung Cang Phan1, Sy Linh Ho2, Minh Thao Nguyen3,4,5, , Sy Thang Ho6, Tho Thanh Bui4
1 IT and Lab Center, Dong Thap University, Vietnam
2 Faculty of Natural Sciences Teacher Education, Dong Thap University, Vietnam
3 Research Affairs Office, Dong Thap University, Vietnam
4 Faculty of Chemistry, University of Science, Vietnam National University Ho Chi Minh city, Vietnam
5 Vietnam National University Ho Chi Minh city, Vietnam
6 Graduate Studies Office, Dong Thap University, Vietnam

Main Article Content

Abstract

The structures of the MnB9 cluster have been investigated by the theoretical calculations. The combination of the genetic algorithm and the density functional theory calculations (GA-DFT) find out seventeen minimum structures, including the local minimum structures and the global minimum structure. The MnB9 cluster can be formed by adding an Mn atom into the B9 cluster. There is also a strong interaction between the MnB9 cluster and the H2 molecule resulting in the expansion or dissociation of the H-H bond. This demonstrates the potential applicability of boron clusters doping manganese in the field of catalyst and adsorption.

Article Details

References

Alexandrova, A. N., Boldyrev, A. I., Zhai, H.-J., & Wang, L.-S. (2006). All-boron aromatic clusters as potential new inorganic ligands and building blocks in chemistry. Coordination Chemistry Reviews, 250(21–22), 2811-2866. https://doi.org/10.1016/j.ccr.2006.03.032.
Giannozzi, P., Baroni, S., Bonini, N., Calandra, M., Car, R., Cavazzoni, C., Ceresoli, D., Chiarotti, G. L., Cococcioni, M., Dabo, I., Dal Corso, A., de Gironcoli, S., Fabris, S., Fratesi, G., Gebauer, R., Gerstmann, U., Gougoussis, C., Kokalj, A., Lazzeri, M., Martin-Samos, L., Marzari, N., Mauri, F., Mazzarello, R., Paolini, S., Pasquarello, A., Paulatto, L., Sbraccia, C., Scandolo, S., Sclauzero, G., Seitsonen, A. P., Smogunov, A., Umari, P., & Wentzcovitch, R. M. (2009). QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. Journal of Physics: Condensed Matter, 21(39), 395502. https://doi.org/10.1088/0953-8984/21/39/395502.
Huynh, B. P. H., Nguyen, M. T., Phan, T. C., Tran, Q. T., & Tran, V. T. (2018). An investigation of the geometrical and electronic structures of MnB0/−/+ clusters by multiconfigurational CASSCF/CASPT2 method. Dong Thap University Journal of Science, 30, 95-101. https://doi.org/10.52714/dthu.30.2.2018.557.
Jia, J., Li, X., Li, Y., Ma, L., & Wu, H.-S. (2014). Density functional theory investigation on the structure and stability of Sc2Bn (n=1–10) clusters. Computational and Theoretical Chemistry, 1027, 128-134. https://doi.org/10.1016/j.comptc.2013.11.008.
Jia, J., Ma, L., Wang, J.-F., & Wu, H.-S. (2013). Structures and stabilities of ScBn (n = 1-12) clusters: an ab initio investigation. Journal of Molecular Modeling, 19(8), 3255-3261. https://doi.org/10.1007/s00894-013-1860-6.
Jian, T., Li, W.-L., Popov, I. A., Lopez, G. V., Chen, X., Boldyrev, A. I., Li, J., & Wang, L.-S. (2016). Manganese-centered tubular boron cluster - MnB16−: A new class of transition-metal molecules. Journal of Chemical Physics, 144(15), 154310. https://doi.org/10.1063/1.4946796.
Kumar, A., Vyas, N., & Ojha, A. K. (2020). Hydrogen storage in magnesium decorated boron clusters (Mg2Bn, n = 4–14): A density functional theory study. International Journal of Hydrogen Energy, 45(23), 12961-12971. https://doi.org/10.1016/j.ijhydene.2020.03.018.
Kuraganti, V., Jain, A., Bar-Ziv, R., Ramasubramaniam, A., & Bar-Sadan, M. (2019). Manganese doping of MoSe2 promotes active defect sites for hydrogen evolution. ACS Applied Materials & Interfaces, 11(28), 25155-25162. https://doi.org/10.1021/acsami.9b05670.
Liu, X., Zhao, G.-f., Guo, L.-j., Jing, Q., & Luo, Y.-h. (2007). Structural, electronic, and magnetic properties of MBn (M= Cr, Mn, Fe, Co, Ni, n≤7) clusters. Physical Review A, 75(6), 063201. https://doi.org/10.1103/PhysRevA.75.063201.
Lyakhov, A. O., Oganov, A. R., Stokes, H. T., & Zhu, Q. (2013). New developments in evolutionary structure prediction algorithm USPEX. Computer Physics Communications, 184(4), 1172-1182. https://doi.org/10.1016/j.cpc.2012.12.009.
Neese, F. (2012). The ORCA program system. Wiley Interdiscip. Rev. Comput. Mol. Sci, 2(1), 73-78.
Nguyen, M. T., & Bui, T. T. (2022). Study the structure, stability and CO2 adsorption of the ScVB5 cluster. Vietnam Journal of Catalysis and Adsorption, 11(1), 49-59. https://doi.org/10.51316/jca.2022.008.
Nguyen, M. T., Nguyen, T. H. H., Dang, T. T. L., Ly, H. H., Phan, T. C., Bui, V. T., Bui, T. T., Tran, Q. T., & Tran, V. T. (2019). The structural calculations of B40/-/+ and MnB30/-/+ clusters. Vietnam Journal of Chemistry, 57(6E1,2), 408-412.
Nguyen, M. T., Nguyen, T. N. T., Nguyen, T. L. H., & Bui, T. T. (2021). An investigation on the structures of Sc2B8 clusters by a combination of the genetic algorithm and density functional theory (GA-DFT) and its CO-adsorption. Vietnam Journal of Catalysis and Adsorption, 10(2), 65-71. https://doi.org/10.51316/jca.2021.030.
Oganov, A. R., & Glass, C. W. (2006). Crystal structure prediction using ab initio evolutionary techniques: principles and applications. Journal of Chemical Physics, 124(24), 244704. https://doi.org/10.1063/1.2210932.
Oganov, A. R., Lyakhov, A. O., & Valle, M. (2011). How evolutionary crystal structure prediction works - and why. Accounts of Chemical Research, 44(3), 227-237. https://doi.org/10.1021/ar1001318.
Ray, S. S., Sahoo, S. R., & Sahu, S. (2019). Hydrogen storage in scandium doped small boron clusters (BnSc2, n=3–10): A density functional study. International Journal of Hydrogen Energy, 44(12), 6019-6030. https://doi.org/10.1016/j.ijhydene.2018.12.109.
Rydén, J., Öberg, S., Heggie, M., Rayson, M., & Briddon, P. (2013). Hydrogen storage in the manganese containing metal–organic framework MOF-73. Microporous and Mesoporous Materials, 165, 205-209. https://doi.org/10.1016/j.micromeso.2012.08.024.
Shakerzadeh, E., Duong, V. L., Tahmasebi, E., & Nguyen, M. T. (2019). The scandium doped boron cluster B27Sc2+: a fruit can-like structure. Physical Chemistry Chemical Physics, 21(17), 8933-8939. https://doi.org/10.1039/C9CP00892F.
Tran, T. M. N., Nguyen, M. T., Tran, Q. T., & Tran, V. T. (2019). A CASSCF/CASPT2 MnB20/−/+. Dong Thap University Journal of Science, 40, 53-59. https://doi.org/10.52714/dthu.40.10.2019.733.
Tran, T. T. H., & Nguyen, V. H. (2020). Zero-point vibration of the adsorbed hydrogen on the Pt(110) surface. Adsorption, 26(3), 453-459. https://doi.org/10.1007/s10450-019-00195-2.
Tran, V. T., Ngo, T. P. A., Tran, T. T., Nguyen, T. H. H., Nguyen, M. T., Tran, Q. T., & Nguyen, H. L. (2020). Structures and properties of VB5−/0 clusters from density functional theory calculations. Dong Thap University Journal of Science, 9(5), 59-67. https://doi.org/10.52714/dthu.9.5.2020.818.
Zhao, L., Qu, X., Wang, Y., Lv, J., Zhang, L., Hu, Z., Gu, G., & Ma, Y. (2017). Effects of manganese doping on the structure evolution of small-sized boron clusters. Journal of Physics: Condensed Matter, 29(26), 265401. https://doi.org/10.1088/1361-648X/aa7190.

Most read articles by the same author(s)

1 2 > >>