The bi-coincidence point of non-commutative maps in partially ordered b-metric spaces

Ngoc Cam Huynh1,
1 Dong Thap University

Main Article Content

Abstract

In this paper, we establish and prove the bi-coincidence point theorem of non-commutative maps in partially ordered b-metric spaces. Also, we provide some relevant illustrations.

Article Details

References

[1]. R. P. Agarwal, El-Gebeily and M. A., O’Regan (2008), “Generalized contractions in partially ordered metric spaces", Appl Anal., (87), 1-8.
[2]. T. G. Bhaskar and V. Lakshmikantham (2006), "Fixed point theorems in partially ordered metric spaces and applications”, Nonlinear Anal., (65), p. 1379-1393.
[3]. M. Boriceanu (2009), “Strict fixed point theorems for multivalued operators in b-metric
spaces”, Int. J. Modern Math., (4), p. 285-301.
T[4]. M. Boriceanu, A. Petrusel and I. A. Rus (2010), “Fixed point theorems for some multivalued generalized contractions in b -metric spaces”, Int. J. Math. Stat., 6(10), p. 65-76.
[5]. S. Czerwik (1998), “Nonlinear set-valued contraction mappings in b -metric spaces”, Atti Sem. Mat. Fis. Univ. Modena, 46(2), p. 263-276.
[6]. R. H. Haghia, Sh. Rezapoura and N. Shahzadb (2011), “Some fixed point generalizations
are not real generalizations”, Nonlinear Anal., (74), p. 1799-1803.
[7]. N. Hussain, A. Latif and M. H. Shah (2012), “Coupled and tripled coincidence point results without compatibility”, Fixed Point Theory Appl., 2012:77, 1
[8]. Nguyễn Trung Hiếu và Huỳnh Ngọc Cảm, "Điểm bất động kép cho ánh xạ co suy rộng trên không gian b-meetric thứ tự bộ phận", Tạp chí Khoa học Đại học Đồng Tháp, (10), 107-115.
[9]. V. Lakshmikantham and L. Ćirić (2009), “Coupled fixed point theorems for nonlinear
contractions in partially ordered metric spaces”, Nonlinear Anal., (70), p. 4341-4349.
[10]. N. V. Luong and N. X. Thuan (2011), “Coupled fixed points in partially ordered metric
spaces and application”, Nonlinear Anal., (74), p. 983-992.