Convergence of agarwal-type iteration process to common fixed points of two generalized -nonexpansive mappings in uniformly convex Banach spaces
Main Article Content
Abstract
In this paper, we come up with establishing the weak and strong convergence of Agarwal type iteration process to common fixed points of two generalized -nonexpansive mappings in uniformly convex Banach spaces. These results are the extensions of the main ones found in [6] and [9]. In addition, some examples are provided for illustration.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Keywords
Generalized -nonexpansive mapping, Agarwal iteration process, common fixed point
References
[3]. F. E. Browder (1965), “Nonexpansive nonlinear operators in a Banach space”, Proc. Nat. Acad. Sci. USA, (54), pp. 1041-1044.
[4]. E. L. Dozo (1973), “Multivalued nonexpansive mappings and Opial's condition”, Proc. Amer. Math. Soc., 38(2), pp. 286-292.
[5] K. Goebel and W. A. Kirk (1990), Topics in Metric Fixed Point Theory, Cambridge Studies in Advanced Mathematics, vol.28. Cambridge University Press, Cambridge.
[6]. R. Pant and R. Shukla (2017), “Approximating fixed points of generalized a-nonexpansive mappings in Banach spaces”, Numer. Funct. Anal. Optim., 38 (2), pp. 248-266.
[7]. H. Piri, B.Daraby, S. Rahrovi and M. Ghasemi (2018), “Approximating fixed points of generalized a-nonexpansive mappings in Banach spaces by new faster iteration process”, Numer. Algorithms, pp. 1-20, first online.
[8]. J. Schu (1991), “Weak and strong convergence to fixed points of asymptotically nonexpansive mappings”, Bull. Aust. Math. Soc., 43 (1), pp. 153-159.
[9]. N. Shahzad and R. Al-Dubiban (2006), “Approximating common fixed points of nonexpansive mappings in Banach spaces”, Georgian Math. J., 13 (3), pp. 529-537.
[10]. T. Suzuki (2011), “Fixed point theorems and convergence theorems for some generalized nonexpansive mappings”, J. Math. Anal. Appl., (340), pp. 1088-1095.
Most read articles by the same author(s)
- Trung Hieu Nguyen, Ngoc Cam Huynh, Định lí điểm bất động kép cho ánh xạ co suy rộng trên không gian b -Mêtric thứ tự bộ phận , Dong Thap University Journal of Science: No. 10 (2014): Part B - Natural Sciences
- Cam Tien Truong, Trung Hieu Nguyen, Convergence of hybrid iteration for equilibrium problems and mappings satisfying condition (ø-Eµ) in uniformly convex and uniformly smooth banach spaces , Dong Thap University Journal of Science: No. 27 (2017): Part B - Natural Sciences
- Pham Cam Tu Cao, Trung Hieu Nguyen, Convergence of a two-step iteration process to common fixed points of two asymptotically g-nonexpansive mappings in Banach spaces with graphs , Dong Thap University Journal of Science: Vol. 9 No. 3 (2020): Natural Sciences Issue (Vietnamese)
- Thi Be Trang Huynh, Trung Hieu Nguyen, Convergence of mann iteration process to a fixed point of (α,β) - nonexpansive mappings in Lp spaces , Dong Thap University Journal of Science: Vol. 9 No. 5 (2020): Natural Sciences Issue (English)
- Trung Hieu Nguyen, Về định lí điểm bất động trên không gian S-mêtric thứ tự bộ phận , Dong Thap University Journal of Science: No. 3 (2013): Part B - Natural Sciences
- Diem Ngoc Huynh, Trung Hieu Nguyen, Covergence of hybrid algorithms for α-nonexpansive mappings in Hilbert spaces , Dong Thap University Journal of Science: No. 25 (2017): Part B - Natural Sciences
- Trung Hieu Nguyen, Quoc Ai Ho, Về định lí điểm bất động cho lớp ánh xạ Meir-Keeler -co trên không gian Kiểu b-mêtric , Dong Thap University Journal of Science: No. 9 (2014): Part B - Natural Sciences
- Trung Hieu Nguyen, Hien Huong Hoang, Về định lí điểm bất động chung cho ánh xạ trong không gian kiểu-mêtric , Dong Thap University Journal of Science: No. 8 (2014): Part B - Natural Sciences
- Trung Hieu Nguyen, Thi Vui Nguyen, Về định lí điểm bất động cho lớp ánh xạ C-co yếu trong không gian S-mêtric sắp thứ tự , Dong Thap University Journal of Science: No. 7 (2014): Part B - Natural Sciences
- Thi Kieu Ngan Doan, Trung Hieu Nguyen, Some common fixed point theorems for -weak nonlinear contraction in partially ordered metric-type spaces , Dong Thap University Journal of Science: No. 13 (2015): Part B - Natural Sciences