Sự hội tụ của dãy lặp kiểu Agarwal đến điểm bất động chung của hai ánh xạ α-không giãn suy rộng trong không gian Banach lồi đều
Nội dung chính của bài viết
Tóm tắt
Trong bài báo này, chúng tôi thiết lập sự hội tụ yếu và hội tụ của dãy lặp kiểu Agarwal đến điểm bất động chung của hai ánh xạ -không giãn suy rộng trong không gian Banach lồi đều. Các kết quả này là những mở rộng của kết quả chính trong [6, 9]. Đồng thời, chúng tôi cũng xây dựng ví dụ minh họa cho kết quả đạt được.
Chi tiết bài viết
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Từ khóa
Ánh xạ -không giãn suy rộng, dãy lặp Agarwal, điểm bất động chung
Tài liệu tham khảo
[1]. K. Aoyama and F. Kohsaka (2011), “Fixed point theorem for a-nonexpansive mapping in Banach space”, Nonlinear Anal., (74), pp. 4387-4391. [2]. B. Beauzamy (1982), Introduction to Banach spaces and their geometry, North-Holland Mathematics Studies, vol.68, North-Holland, Amsterdam.
[3]. F. E. Browder (1965), “Nonexpansive nonlinear operators in a Banach space”, Proc. Nat. Acad. Sci. USA, (54), pp. 1041-1044.
[4]. E. L. Dozo (1973), “Multivalued nonexpansive mappings and Opial's condition”, Proc. Amer. Math. Soc., 38(2), pp. 286-292.
[5] K. Goebel and W. A. Kirk (1990), Topics in Metric Fixed Point Theory, Cambridge Studies in Advanced Mathematics, vol.28. Cambridge University Press, Cambridge.
[6]. R. Pant and R. Shukla (2017), “Approximating fixed points of generalized a-nonexpansive mappings in Banach spaces”, Numer. Funct. Anal. Optim., 38 (2), pp. 248-266.
[7]. H. Piri, B.Daraby, S. Rahrovi and M. Ghasemi (2018), “Approximating fixed points of generalized a-nonexpansive mappings in Banach spaces by new faster iteration process”, Numer. Algorithms, pp. 1-20, first online.
[8]. J. Schu (1991), “Weak and strong convergence to fixed points of asymptotically nonexpansive mappings”, Bull. Aust. Math. Soc., 43 (1), pp. 153-159.
[9]. N. Shahzad and R. Al-Dubiban (2006), “Approximating common fixed points of nonexpansive mappings in Banach spaces”, Georgian Math. J., 13 (3), pp. 529-537.
[10]. T. Suzuki (2011), “Fixed point theorems and convergence theorems for some generalized nonexpansive mappings”, J. Math. Anal. Appl., (340), pp. 1088-1095.
[3]. F. E. Browder (1965), “Nonexpansive nonlinear operators in a Banach space”, Proc. Nat. Acad. Sci. USA, (54), pp. 1041-1044.
[4]. E. L. Dozo (1973), “Multivalued nonexpansive mappings and Opial's condition”, Proc. Amer. Math. Soc., 38(2), pp. 286-292.
[5] K. Goebel and W. A. Kirk (1990), Topics in Metric Fixed Point Theory, Cambridge Studies in Advanced Mathematics, vol.28. Cambridge University Press, Cambridge.
[6]. R. Pant and R. Shukla (2017), “Approximating fixed points of generalized a-nonexpansive mappings in Banach spaces”, Numer. Funct. Anal. Optim., 38 (2), pp. 248-266.
[7]. H. Piri, B.Daraby, S. Rahrovi and M. Ghasemi (2018), “Approximating fixed points of generalized a-nonexpansive mappings in Banach spaces by new faster iteration process”, Numer. Algorithms, pp. 1-20, first online.
[8]. J. Schu (1991), “Weak and strong convergence to fixed points of asymptotically nonexpansive mappings”, Bull. Aust. Math. Soc., 43 (1), pp. 153-159.
[9]. N. Shahzad and R. Al-Dubiban (2006), “Approximating common fixed points of nonexpansive mappings in Banach spaces”, Georgian Math. J., 13 (3), pp. 529-537.
[10]. T. Suzuki (2011), “Fixed point theorems and convergence theorems for some generalized nonexpansive mappings”, J. Math. Anal. Appl., (340), pp. 1088-1095.
Các bài báo được đọc nhiều nhất của cùng tác giả
- Nguyễn Trung Hiếu, Huỳnh Ngọc Cảm, Định lí điểm bất động kép cho ánh xạ co suy rộng trên không gian b -Mêtric thứ tự bộ phận , Tạp chí Khoa học Đại học Đồng Tháp: Số 10 (2014): Phần B - Khoa học Tự nhiên
- Trương Cẩm Tiên, Nguyễn Trung Hiếu, Sự hội tụ của dãy lặp hỗn hợp cho bài toán cân bằng và ánh xạ thỏa mãn điều kiện (ø-Eµ) trong không gian banach trơn đều và lồi đều , Tạp chí Khoa học Đại học Đồng Tháp: Số 27 (2017): Phần B - Khoa học Tự nhiên
- Cao Phạm Cẩm Tú, Nguyễn Trung Hiếu, Sự hội tụ của dãy lặp hai bước đến điểm bất động chung của hai ánh xạ G-không giãn tiệm cận trong không gian Banach với đồ thị , Tạp chí Khoa học Đại học Đồng Tháp: Tập 9 Số 3 (2020): Chuyên san Khoa học Tự nhiên (Tiếng Việt)
- Huynh Thi Be Trang, Nguyen Trung Hieu, Convergence of mann iteration process to a fixed point of (α,β) - nonexpansive mappings in Lp spaces , Tạp chí Khoa học Đại học Đồng Tháp: Tập 9 Số 5 (2020): Chuyên san Khoa học Tự nhiên (Tiếng Anh)
- Nguyễn Trung Hiếu, Về định lí điểm bất động trên không gian S-mêtric thứ tự bộ phận , Tạp chí Khoa học Đại học Đồng Tháp: Số 3 (2013): Phần B - Khoa học Tự nhiên
- Huỳnh Diễm Ngọc, Nguyễn Trung Hiếu, Sự hội tụ của thuật toán lai ghép cho ánh xạ α-không giãn trong không gian Hilbert , Tạp chí Khoa học Đại học Đồng Tháp: Số 25 (2017): Phần B - Khoa học Tự nhiên
- Nguyễn Trung Hiếu, Hồ Quốc Ái, Về định lí điểm bất động cho lớp ánh xạ Meir-Keeler -co trên không gian Kiểu b-mêtric , Tạp chí Khoa học Đại học Đồng Tháp: Số 9 (2014): Phần B - Khoa học Tự nhiên
- Nguyễn Trung Hiếu, Hoàng Hiền Hưởng, Về định lí điểm bất động chung cho ánh xạ trong không gian kiểu-mêtric , Tạp chí Khoa học Đại học Đồng Tháp: Số 8 (2014): Phần B - Khoa học Tự nhiên
- Nguyễn Trung Hiếu, Nguyễn Thị Vui, Về định lí điểm bất động cho lớp ánh xạ C-co yếu trong không gian S-mêtric sắp thứ tự , Tạp chí Khoa học Đại học Đồng Tháp: Số 7 (2014): Phần B - Khoa học Tự nhiên
- Đoàn Thị Kiều Ngân, Nguyễn Trung Hiếu, Định lí điểm bất động chung của ánh xạ - co yếu phi tuyến tính trong không gian kiểu-mêtric sắp thứ tự , Tạp chí Khoa học Đại học Đồng Tháp: Số 13 (2015): Phần B - Khoa học Tự nhiên