Directionally BCQ and strong BCQ of solution sets for convex inequalities and applications

Ngoc Cam Huynh1
1 Dong Thap University

Main Article Content

Abstract

In this paper, we introduce new notions of constraint qualifications, including directionally BCQ, directionally strong BCQ and directionally extended BCQ. We also study relationships among these constraint qualifications and their applications in optimization problems of directionally convex inequalities.

Article Details

References

[1] H. H. Bauschke, J. M. Borwein and W. Li (1999), “Strong conical hull intersection property, bounded linear regularity, Jameson’s property (G), and error bounds in convex optimization”, Math. Program., (86), p. 135-160.
[2] A. Dhara, J. Dutta (2012), Optimality conditions in convex optimization: a finite-dimensional view, CRC Press, Boca Raton.
[3] J. B. Hiriart-Urruty and C. Lemaréchal (1993), Convex analysis and minimization Algorithmsi, Springer-Verlag, Berlin, Heidelberg, Germany.
[4] H. Hu (2005), “Characterizations of the strong basic constraint qualifications”, Math. Oper. Res., (30), p. 956-965.
[5] W. Li, C. Nahak, and I. Singer (2000), “Constraint qualifications for semi-infinite systems of convex inequalities”, SIAM J. Optim., (11), p. 31-52.
[6] C. Li and K. F. Ng (2003), “Constraint qualification, the strong CHIP, and best approximation with convex constraints in Banach spaces”, SIAM J. Optim., (14), p. 584-607.
[7]. C. Li, K. F. Ng and T. K. Pong (2008), “Constraint qualifications for convex inequality systems with applications in constrained optimization”, SIAM J. Optim., (19), p. 163-187.
[8]. Nguyễn Thị Thanh Thảo và Võ Đức Thịnh (2016), “Dưới vi phân lồi theo hướng và ứng dụng”, Tạp chí Khoa học Đại học Đồng Tháp, đã nhận đăng.
[9]. D. Tiba and C. Zămlinescu (2004), “On the Necessity of some Constraint Qualification Conditions in Convex Programming”, J. Convex Anal, (11), p. 95-110.
[10]. X. Y. Zheng and K. F. Ng (2004), “Metric regularity and constraint qualifications for convex inequalities on Banach spaces”, SIAM J. Optim., (14), p. 757-772.