Convergence of a hybrid iterative process for asymptotically quasi -nonexpansive mappings and generalized mixed variational $\Phi$-like inequality problems in Banach spaces

Top Ti Nguyen1, , Trung Hieu Nguyen2
1 Student, Faculty of Mathematics - Informatics Teacher Education, School of Education, Dong Thap University, Cao Lanh 870000, Vietnam
2 Faculty of Mathematics - Informatics Teacher Education, School of Education, Dong Thap University, Cao Lanh 870000, Vietnam

Main Article Content

Abstract

In this paper, we introduce a hybrid iterative process for approximating common elements of  fixed points of asymptotically quasi $\phi$-nonexpansive mappings and solutions of  generalized mixed variational-like inequality problems. After that, we prove a strong convergence result for the proposed iteration in Banach spaces. In addition, we give a numerical example to illustrate the convergence result of  the proposed iteration.

Article Details

References

Alber, Y.I. (1996). Metric and generalized projection operators in Banach spaces. Properties and applications. Lect. Notes Pure Appl. Math., 15-50.https://doi.org/10.48550/arXiv.funct-an/9311001
Anh, P. K., & Hieu, D. V. (2015). Parallel and sequential hybrid methods for a finite family of asymptotically quasi-φ-nonexpansive mappings. J. Appl. Math. Comput, 48(1), 241-263. J. Appl. Math. Comput, 48(1), 241-263.
https://doi.org/10.1007/s12190-014-0801-6
Blum, E., & W. Oettli, W. (1994). From optimization and variational inequalities to equilibrium problems. Math. Stud.,63, 123-145.
Farid, M., Cholamjiak, W., Ali, R., & Kazmi, K. R. (2021). A new shrinking projection algorithm for a generalized mixed variational-like inequality problem and asymptotically quasi- -nonexpansive mapping in a Banach space. R. Acad. Cienc. Exactas Fi's. Nat. Ser. A Mat., 115(3), 114. https://doi.org/10.1016/j.na.2009.04.023
Hao, Y. (2013). Some results on a modified Mann iterative scheme in a reflexive Banach spaces. J. Fixed Point Theory Appl., 2013(227), 1-14.
https://doi.org/10.1186/1687-1812-2013-227
Kazmi, K. R., & Ali, R. (2019). Hybrid projection method for a system of unrelated generalized mixed variational-like inequality problems, Georgian Math. J., 26(1), 63-78.
https://doi.org/10.1515/gmj-2017-0027
Kamimura, S., & Takahashi, W. (2002) Strong convergence of a proximal-type algorithm in a Banach space. SIAM J. Optim. 13, 938-945
https://doi.org/10.1137/S105262340139611X
Muu, L.D., & Oettli, W. (1992). Convergence of an adaptive penalty scheme for finding constrained equilibria. Nonlinear Anal., 18, 1159-1166
https://doi.org/10.1016/0362-546X(92)90159-C
Noor, M. A., & Oettli, W. (1994). On general nonlinear complementarity problems and quasi-equilibria. Le Matematiche (Catania), 49, 313-331.
Preda, V., Beldiman, M. & Bătătoresou, A. (2007). On Variational-like inequalities with generalized monotone mappings, in: Generalized Convexity and Related Topics, Lecture Notes in Econom. Math. Springer, Berlin, 415–431.
https://doi.org/10.1007/978-3-540-37007-9_25
Qin, X., Cho, Y.J., Kang, S.M., & Zhou, H. (2009). Convergence of a modified Halpern-type iteration algorithm for quasi-φ- nonexpansive mappings. Appl. Math. Lett, 22, 1051-1055.
https://doi.org/10.1016/j.aml.2009.01.015
Qin, X., Cho, S.Y. , & Kang, S.M. (2010). On hybrid projection methods for asymptotically quasi-φ-nonexpansive mappings. Appl. Math. Comput, 215, 3874-3883. https://doi.org/10.1016/j.amc.2009.11.031
Tada, A. & Takahashi, W. (2007). Weak and strong convergence theorems for a nonexpansive mapping and an equilibrium problem. J. Optim. Theory Appl., 133, 359-370.
https://doi.org/10.1007/s10957-007-9187-z
Takahashi, W. & Zembayashi, K. (2009). Strong and weak convergence theorems for equilibrium problems and relatively nonexpansive mappings in Banach spaces. Nonlinear Anal., 70, 45-57.
https://doi.org/10.1016/j.na.2007.11.031
Thianwan, T., & Yambangwai, D. (2019). Convergence analysis for a new two-step iteration process for G-nonexpansive mappings with directed graphs. J. Fixed Point Theory Appl. 21(44),1-16. https://doi.org/10.1007/s11784-019-0681-3
Yang, F., Zhao, L., & Kim., J. K. (2012). Hybrid projection method for generalized mixed equilibrium problem and fixed point problem of infinite family of asymptotically quasi-φ-nonexpansive mappings in Banach spaces. Appl. Math. Comput. 218(10), 6072-6082. https://doi.org/10.1016/j.amc.2011.11.091

Most read articles by the same author(s)

1 2 3 > >>