The fixed point theorem for almost generalized (ψ ,ϕ)- contractive mappings in ordered b -metric spaces
Main Article Content
Abstract
The purpose of this paper is to introduce the notion of almost generalized (ψ ϕ)-contractive mappings in ordered b-metric spaces by adding four items of d(f2x,fx), d(f2x,y), d(f2x,fy) and and establish the fixed point theorem for this kind of mappings. In addition, some examples are provided to illustrate the obtained results.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Keywords
fixed point, b -metric space, almost generalized (ψ ϕ) -contractive mapping
References
[1]. A. Aghajani (2014), M. Abbas, and J. R. Roshan (2014), “Common fixed point of generalized weak contractive mappings in partially ordered b-metric spaces”, Math. Slovaca, 64 (4), p. 941-960.
[2]. I. A. Bakhtin (1989), “The contraction principle in quasimetric spaces”, Func. An. Ulianowsk Gos. Fed. Ins., (30), p. 26-37.
[3]. L. B. Ćirićć M. Abbas, R. Saadati, and N. Hussain (2011), “Common fixed points of almost generalized contractive mappings in ordered metric spaces”, Appl. Math. Comput., (217), p. 5784-5789.
[4]. P. Collaco and J. C. E. Silva (1997), “A complete comparison of 25 contraction conditions”, Nonlinear Anal., 30(1), p. 471-476.
[5]. S. Czerwik (1993), “Contraction mappings in b -metric spaces”, Acta Math. Univ. Ostrav., (1), p. 5-11.
[6]. S. Czerwik (1998), “Nonlinear set-valued contraction mappings in b -metric spaces”, Atti Semin. Mat. Fis. Univ. Modena, 46 (2), p. 263-276.
[7]. M. S. Khan, M. Swaleh, and S. Sessa (1984), “Fixed point theorems by altering distances between the points”, Bull. Austral. Math. Soc., 30 (1), p. 1-9.
[8]. P. Kumam, N. V. Dung, and K. Sitthithakerngkiet (2014), “A generalization of Ćirić fixed point theorems”, Filomat, 7 pages, to appear.
[9]. J. R. Roshan, V. Parvaneh, S. Sedghi, N. Shobkolaei, and W. Shatanawi (2013), “Common fixed points of almost generalized (È,Õ)s -contractive mappings in ordered b -metric spaces”, Fixed Point Theory Appl., (2013:159), p. 1-23.
[10]. W. Shatanawi and A. Al-Rawashdeh (2012), “Common fixed points of almost generalized (È,Õ)-contractive mappings in ordered metric spaces”, Fixed Point Theory Appl., (2012:80), p. 1-14.
[2]. I. A. Bakhtin (1989), “The contraction principle in quasimetric spaces”, Func. An. Ulianowsk Gos. Fed. Ins., (30), p. 26-37.
[3]. L. B. Ćirićć M. Abbas, R. Saadati, and N. Hussain (2011), “Common fixed points of almost generalized contractive mappings in ordered metric spaces”, Appl. Math. Comput., (217), p. 5784-5789.
[4]. P. Collaco and J. C. E. Silva (1997), “A complete comparison of 25 contraction conditions”, Nonlinear Anal., 30(1), p. 471-476.
[5]. S. Czerwik (1993), “Contraction mappings in b -metric spaces”, Acta Math. Univ. Ostrav., (1), p. 5-11.
[6]. S. Czerwik (1998), “Nonlinear set-valued contraction mappings in b -metric spaces”, Atti Semin. Mat. Fis. Univ. Modena, 46 (2), p. 263-276.
[7]. M. S. Khan, M. Swaleh, and S. Sessa (1984), “Fixed point theorems by altering distances between the points”, Bull. Austral. Math. Soc., 30 (1), p. 1-9.
[8]. P. Kumam, N. V. Dung, and K. Sitthithakerngkiet (2014), “A generalization of Ćirić fixed point theorems”, Filomat, 7 pages, to appear.
[9]. J. R. Roshan, V. Parvaneh, S. Sedghi, N. Shobkolaei, and W. Shatanawi (2013), “Common fixed points of almost generalized (È,Õ)s -contractive mappings in ordered b -metric spaces”, Fixed Point Theory Appl., (2013:159), p. 1-23.
[10]. W. Shatanawi and A. Al-Rawashdeh (2012), “Common fixed points of almost generalized (È,Õ)-contractive mappings in ordered metric spaces”, Fixed Point Theory Appl., (2012:80), p. 1-14.
Most read articles by the same author(s)
- Trung Hieu Nguyen, Buu Son Ky Huong believer's costume from the perspective of sociocultural and natural environment , Dong Thap University Journal of Science: Vol. 11 No. 4 (2022): Social Sciences and Humanities Issue (Vietnamese)
- The Anh Tran, Thanh Nghia Nguyen, Trung Hieu Le, Some new criteria for generalized contraction of differential systems with delays , Dong Thap University Journal of Science: Vol. 12 No. 2 (2023): Natural Sciences Issue (Vietnamese)
- Bich Nhu Nguyen, Trung Hieu Nguyen, Assessing pedagogy students’ satisfaction from training activities at Soc Trang Community College , Dong Thap University Journal of Science: Vol. 10 No. 4 (2021): Social Sciences and Humanities Issue (Vietnamese)
- Bich Nhu Nguyen, Bich Tram Nguyen, Trung Hieu Nguyen, Assessing students’ satisfaction from online learning experiences at Soc Trang Community College , Dong Thap University Journal of Science: Vol. 11 No. 6 (2022): Social Sciences and Humanities Issue (Vietnamese)
- Trung Hieu Nguyen, Bich Nhu Nguyen, Using classical test theory to analyze multiple – choice questions , Dong Thap University Journal of Science: No. 35 (2018): Part A - Social Sciences and Humanities
- Van Dung Nguyen, Trung Hieu Nguyen, Duc Thinh Vo, Công bố khoa học của Trường Đại học Đồng Tháp giai đoạn 2003-2013 và đề xuất một số định hướng , Dong Thap University Journal of Science: No. 9 (2014): Part A - Social Sciences and Humanities
- Tan Tien Tran, Trung Hieu Nguyen, Convergence of an iteration to common fixed points of two Bregman totally quasi-asymptotically nonexpansive mappings in reflexive Banach spaces , Dong Thap University Journal of Science: Vol. 11 No. 2 (2022): Natural Sciences Issue (Vietnamese)
- Ai Lam Pham, Trung Hieu Nguyen, On the exsitence and approximation of fixed points of monotone mappings satisfying condition (E) in partially ordered Banach spaces , Dong Thap University Journal of Science: No. 31 (2018): Part B - Natural Sciences
- Trung Hieu Nguyen, Thi Chac Le, Common fixed point theorems for generalized weak -contraction mappings in partially ordered 2 -metric spaces , Dong Thap University Journal of Science: No. 22 (2016): Part B - Natural Sciences
- Trung Hieu Nguyen, Ngoc Cam Huynh, Định lí điểm bất động kép cho ánh xạ co suy rộng trên không gian b -Mêtric thứ tự bộ phận , Dong Thap University Journal of Science: No. 10 (2014): Part B - Natural Sciences