Some common fixed point theorems for -weak nonlinear contraction in partially ordered metric-type spaces

Thi Kieu Ngan Doan1, Trung Hieu Nguyen2,
1 Student, Dong Thap University
2 Dong Thap University

Main Article Content

Abstract

This paper aims to present results obtained from constructing and proving some common fixed point theorems for  -weak nonlinear contraction in partially ordered metric-type spaces. These results are the expansion of the main results in [4]. 

Article Details

References

[1]. T. V. An, N. V. Dung, Z. Kadelburg, and S. Radenovic (2014), “Various generalizations of metric spaces and fixed point theorems”, Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Mat. RACSAM, (109), p. 175-198.
[2]. P. Collaco and J. C. E. Silva (1997), “A complete comparison of 25 contraction conditions”, Nonlinear Anal., 30(1), p. 471-476.
[3]. D. Dorić (2009), “Common fixed point for generalized -weak contractions”, Appl. Math. Lett., (22), p. 1896-1900.
[4]. D. E. Gordji, H. Baghani, and G. H. Kim (2012), “Common fixed point theorems for -weak nonlinear contraction in partially ordered sets”, Fixed Point Theory Appl., (2012:62), p. 1-12.
[5]. Nguyễn Trung Hiếu và Hồ Quốc Ái (2014), “Về định lí điểm bất động cho lớp ánh xạ Meir Keeler -co trên không gian kiểu-mêtric”, Tạp chí Khoa học Đại học Đồng Tháp, (số 9), tr. 101-111.
[6]. N. T. Hieu and V. T. L. Hang (2013), “Coupled fixed point theorems for generalized - -contractive mappings in partially ordered metric-type spaces”, J. Nonlinear Anal. Optim., 19 pages, submitted.
[7]. Nguyễn Trung Hiếu và Hoàng Hiền Hưởng (2014), “Về định lí điểm bất động chung cho ánh xạ trong không gian kiểu-mêtric”. Tạp chí Khoa học Đại học Đồng Tháp, (số 8), tr. 33-42.
[8]. M. A. Khamsi (2010), “Remarks on cone metric spaces and fixed point theorems of contractive mappings” Fixed Point Theory Appl., (2010), p. 1-7.
[9]. B. E. Rhoades (2001), “Some theorems on weakly contractive maps”, Nonlinear Anal., (47), p. 2683-2693.
[10]. Q. Zhang and Y. Song (2009), “Fixed point theory for generalized -weak contractions” Appl. Math. Lett., (22), p. 75-78.

Most read articles by the same author(s)

1 2 3 > >>