Về định lí điểm bất động trên không gian S-mêtric thứ tự bộ phận
Nội dung chính của bài viết
Tóm tắt
Trong bài báo này, chúng tôi thiết lập các định lí điểm bất động trên không gian S-mêtric thứ tự bộ phận và chứng minh rằng các định lí điểm bất động trong [6] được suy ra từ các định lí này. Đồng thời, chúng tôi xây dựng ví dụ minh họa cho kết quả đạt được.
Chi tiết bài viết
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Tài liệu tham khảo
[1]. T. V. An and N. V. Dung, Two fixed point theorems in S-metric spaces,(2012), preprint.
[2]. J. Caballero, J. Harjani, and K. Sadarangani, Contractive-like mapping principles in ordered metric spaces and application to ordinary differential equations, Fixed Point Theory Appl. 2010, Article ID 916064, 14 pages, doi:10.1155/2010/916064.
[3]. N. V. Dung and N. T. Hieu, One fixed point theorem for g-monotone maps on partially ordered S-metric spaces, (2012), preprint.
[4] N. V. Dung, N. T. Hieu, and N. T. T. Ly, A generalization of Ciric quasi-contractions for
maps on S-metric spaces, Thai. J. Math.(2013), accepted.
[5]. M. S. Khan, M. Swaleh, and S. Sessa, Fixed point theorems by altering distances between the points, Bull. Austral. Math. Soc, 30(1)(1984), 1-9.
[6]. R. Sastry and R. Babu, Some fixed point theorems by altering distances between the points, Indian J. pure appl. Math, 30(6) (1999), 641-647.
[7]. S. Sedghi, N. Shobe, and A. Aliouche, A generalization of fixed point theorem in S-metric spaces, Mat. Vesnik 64 (2011), no.3, 258-266.
[8]. S. Sedghi and N. V. Dung, Fixed point theorem on S-metric spaces, Mat. Vesnik (2012), accepted.
[9]. W. Shatanawi and A. Al-Rawashdeh, Common fixed points of almost generalized -contractive mappings in ordered metric spaces, Fixed Point Theory Appl. 2012, 2012:80, 13 pages, doi:10.1186/1687-1812-2012-152.
[10]. Y. Su, Q. Feng, J. Zhang, Q. Cheng, and F. Yan, A new contraction mapping principle in partially ordered metric spaces and applications to ordinary differential equations, Fixed Point Theory Appl. 2012, 2012:152 13 pages, doi:10.1186/1687-1812-2012-152.
[2]. J. Caballero, J. Harjani, and K. Sadarangani, Contractive-like mapping principles in ordered metric spaces and application to ordinary differential equations, Fixed Point Theory Appl. 2010, Article ID 916064, 14 pages, doi:10.1155/2010/916064.
[3]. N. V. Dung and N. T. Hieu, One fixed point theorem for g-monotone maps on partially ordered S-metric spaces, (2012), preprint.
[4] N. V. Dung, N. T. Hieu, and N. T. T. Ly, A generalization of Ciric quasi-contractions for
maps on S-metric spaces, Thai. J. Math.(2013), accepted.
[5]. M. S. Khan, M. Swaleh, and S. Sessa, Fixed point theorems by altering distances between the points, Bull. Austral. Math. Soc, 30(1)(1984), 1-9.
[6]. R. Sastry and R. Babu, Some fixed point theorems by altering distances between the points, Indian J. pure appl. Math, 30(6) (1999), 641-647.
[7]. S. Sedghi, N. Shobe, and A. Aliouche, A generalization of fixed point theorem in S-metric spaces, Mat. Vesnik 64 (2011), no.3, 258-266.
[8]. S. Sedghi and N. V. Dung, Fixed point theorem on S-metric spaces, Mat. Vesnik (2012), accepted.
[9]. W. Shatanawi and A. Al-Rawashdeh, Common fixed points of almost generalized -contractive mappings in ordered metric spaces, Fixed Point Theory Appl. 2012, 2012:80, 13 pages, doi:10.1186/1687-1812-2012-152.
[10]. Y. Su, Q. Feng, J. Zhang, Q. Cheng, and F. Yan, A new contraction mapping principle in partially ordered metric spaces and applications to ordinary differential equations, Fixed Point Theory Appl. 2012, 2012:152 13 pages, doi:10.1186/1687-1812-2012-152.
Các bài báo được đọc nhiều nhất của cùng tác giả
- Nguyễn Trung Hiếu, Trang phục của tín đồ đạo Bửu Sơn Kỳ Hương từ góc nhìn văn hóa – xã hội và môi trường tự nhiên , Tạp chí Khoa học Đại học Đồng Tháp: Tập 11 Số 4 (2022): Chuyên san Khoa học Xã hội và Nhân văn (Tiếng Việt)
- Nguyễn Bích Như, Nguyễn Trung Hiếu, Nghiên cứu đánh giá sự hài lòng của sinh viên chuyên ngành sư phạm đối với hoạt động đào tạo ở Trường Cao đẳng Cộng đồng Sóc Trăng , Tạp chí Khoa học Đại học Đồng Tháp: Tập 10 Số 4 (2021): Chuyên san Khoa học Xã hội và Nhân văn (Tiếng Việt)
- Nguyễn Bích Như, Nguyễn Bích Trâm, Nguyễn Trung Hiếu, Đánh giá sự hài lòng của người học đối với hình thức học tập trực tuyến tại Trường Cao đẳng Cộng đồng Sóc Trăng , Tạp chí Khoa học Đại học Đồng Tháp: Tập 11 Số 6 (2022): Chuyên san Khoa học Xã hội và Nhân văn (Tiếng Việt)
- Nguyễn Trung Hiếu, Nguyễn Bích Như, Ứng dụng Lý thuyết trắc nghiệm cổ điển trong phân tích câu hỏi trắc nghiệm khách quan , Tạp chí Khoa học Đại học Đồng Tháp: Số 35 (2018): Phần A - Khoa học Xã hội và Nhân văn
- Nguyễn Văn Dũng, Nguyễn Trung Hiếu, Võ Đức Thịnh, Công bố khoa học của Trường Đại học Đồng Tháp giai đoạn 2003-2013 và đề xuất một số định hướng , Tạp chí Khoa học Đại học Đồng Tháp: Số 9 (2014): Phần A - Khoa học Xã hội và Nhân văn
- Trần Tân Tiến, Nguyễn Trung Hiếu, Sự hội tụ của dãy lặp đến điểm bất động chung của hai ánh xạ tựa tiệm cận không giãn hoàn toàn Bregman trong không gian Banach phản xạ , Tạp chí Khoa học Đại học Đồng Tháp: Tập 11 Số 2 (2022): Chuyên san Khoa học Tự nhiên (Tiếng Việt)
- Nguyễn Thành Nghĩa, Nguyễn Trung Hiếu, Định lí điểm bất động cho ánh xạ hầu co-(ψ ,ϕ) tổng quát trong không gian b-mêtric , Tạp chí Khoa học Đại học Đồng Tháp: Số 14 (2015): Phần B - Khoa học Tự nhiên
- Phạm Ái Lam, Nguyễn Trung Hiếu, Sự tồn tại và xấp xỉ điểm bất động của ánh xạ đơn điệu thỏa mãn điều kiện (E) trong không gian Banach sắp thứ tự , Tạp chí Khoa học Đại học Đồng Tháp: Số 31 (2018): Phần B - Khoa học Tự nhiên
- Nguyễn Trung Hiếu, Lê Thị Chắc, Định lí điểm bất động chung của ánh xạ (ψ,S, C)-co yếu tổng quát trong không gian 2-metric sắp thứ tự , Tạp chí Khoa học Đại học Đồng Tháp: Số 22 (2016): Phần B - Khoa học Tự nhiên
- Nguyễn Trung Hiếu, Định lý điểm bất động với điều kiện co hữu tỉ trong không gian mêtric chữ nhật sắp thứ tự , Tạp chí Khoa học Đại học Đồng Tháp: Số 12 (2015): Phần B - Khoa học Tự nhiên