Điều kiện cần và đủ theo dãy cho nghiệm của bài toán tối ưu với ràng buộc nhúng

Nguyễn Kim Ngân1, Võ Đức Thịnh2,
1 Sinh viên, Trường Đại học Đồng Tháp
2 Trường Đại học Đồng Tháp

Nội dung chính của bài viết

Tóm tắt

Trong bài báo này, chúng tôi xây dựng điều kiện cần và đủ theo dãy cho nghiệm của bài toán tối ưu với ràng buộc nhúng. Các điều kiện tối ưu theo dãy đạt được trong bài báo này không cần kèm theo một ràng buộc chính qui.

Chi tiết bài viết

Tài liệu tham khảo

[1]. J. M. Borwein and H. Wolkowicz (1982), “Characterizations of optimality without constraint qualification for the abstract convex program”, Math. Programming Stud., (19), p. 77-100.
[2]. A. Brondsted and R. T. Rockafellar (1965), “On the subdifferentiability of convex functions”, Proc. Amer. Math. Soc., (16), p. 605-611.
[3]. S. Dempe and A. B. Zemkoho (2012), “On the Karush-Kuhn-Tucker reformulation of the bilevel optimization problem”, Nonlinear Anal., (75), p. 1202-1218.
[4]. S. Dempe, N. Dinh, and J. Dutta (2010), “Optimality Conditions for a Simple Convex Bilevel Programming Problem”, Variational Analysis and Generalized Differentiation in Optimization and Control Springer Optimization and Its Applications, (47), p. 149-161.
[5]. A. Dhara and J. Dutta (2012), Optimality Conditions in Convex Optimization, A Finite-Dimension View, Taylor and Francis Group.
[6]. W. Heins and S. K. Mitter (1970), “Conjugate convex function, Duality and Optimal control, Problem I: Systems Governed Ordinary Differential equations”, Inform. Sciences, (2), p. 211-243.
[7]. V. Jeyakumar, G. M. Lee, and N. Dinh (2003), “New sequential Lagrange multiplier conditions charactering optimality without constraint qualification for convex programs”, Siam J. Optim., (14), p. 534-547.
[8]. V. Jeyakumar, A. M. Rubinov, B. M. Glover, and Y. Ishizuka (1996), “Inequality systems and Global optimization”, J. Math. Anal. App., (202), p. 900-919.
[9]. P. Kanniappan (1983), “ Necessary condition for optimality of nondifferentiable convex multiobjective programming”, J. Optim. Theory and App., (40), p. 167-174.
[10]. L. Thibault (1997), “Sequential convex subdifferential calculus and Lagrange multipliers”, Siam J. Control Optim., (7), p. 641-662.

Các bài báo được đọc nhiều nhất của cùng tác giả

1 2 > >>